skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reichel, Lothar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tikhonov regularization is commonly used in the solution of linear discrete ill-posed problems. It is known that iterated Tikhonov regularization often produces approximate solutions of higher quality than (standard) Tikhonov regularization. This paper discusses iterated Tikhonov regularization for large-scale problems with a general regularization matrix. Specifically, the original problem is reduced to small size by application of a fairly small number of steps of the Arnoldi or Golub-Kahan processes, and iterated Tikhonov is applied to the reduced problem. The regularization parameter is determined by using an extension of a technique first described by Donatelli and Hanke for quite special coefficient matrices. Convergence of the method is established and computed examples illustrate its performance. 
    more » « less
    Free, publicly-accessible full text available May 6, 2026
  2. ABSTRACT Several iterative soft‐thresholding algorithms, such as FISTA, have been proposed in the literature for solving regularized linear discrete inverse problems that arise in various applications in science and engineering. These algorithms are easy to implement, but their rates of convergence may be slow. This paper describes novel approaches to reduce the computations required for each iteration by using Krylov subspace techniques. Specifically, we propose to impose sparsity on the coefficients in the representation of the computed solution in terms of a Krylov subspace basis. Several numerical examples from image deblurring and computerized tomography are used to illustrate the efficiency and accuracy of the proposed methods. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Free, publicly-accessible full text available January 10, 2026
  4. null (Ed.)
    Abstract This paper introduces the notions of chained and semi-chained graphs. The chain of a graph, when existent, refines the notion of bipartivity and conveys important structural information. Also the notion of a center vertex $$v_c$$ v c is introduced. It is a vertex, whose sum of p powers of distances to all other vertices in the graph is minimal, where the distance between a pair of vertices $$\{v_c,v\}$$ { v c , v } is measured by the minimal number of edges that have to be traversed to go from $$v_c$$ v c to v . This concept extends the definition of closeness centrality. Applications in which the center node is important include information transmission and city planning. Algorithms for the identification of approximate central nodes are provided and computed examples are presented. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)